

PL Homeomorphisms of the circle which are piecewise C^1 conjugate to irrational rotations

Isabelle Liousse

Abstract. For a PL homeomorphism f with irrational rotation number α , the following properties are equivalent

- (i) f is conjugate to the rotation by α through a piecewise C^1 homeomorphism,
- (ii) the number of break points of f^n is bounded by some constant that doesn't depend on n.
- (iii) f is conjugate to an affine 2-intervals exchange transformation (with rotation number α) through a PL homeomorphism,
 - (iv) f is conjugate to the rotation by α through a piecewise analytic homeomorphism.

Keywords: PL Homeomorphisms of the circle, invariant measure, conjugacy.

Mathematical subject classification: 37E10, 37C15.

1 Introduction

We write $S^1 = \frac{\mathbb{R}}{\mathbb{Z}}$ for the circle. We have the natural projection $\Pi \colon \mathbb{R} \to S^1$. This provides a lift of a homeomorphism $f \colon S^1 \to S^1$ to a homeomorphism $\tilde{f} \colon \mathbb{R} \to \mathbb{R}$ with the property $f \circ \Pi = \Pi \circ \tilde{f}$.

An important characteristic of circle homeomorphism is "rotation number" defined by H. Poincaré ([12]) as

$$\rho(f) = \lim_{n \to +\infty} \frac{\tilde{f}^n(x) - x}{n} \pmod{1}.$$

Assuming that f is a C^2 -diffeomorphism and $\rho(f)$ is irrational, A. Denjoy ([3]) proved that f is topologically conjugate to the rotation by $\rho(f)$.

This classical result can be extended (with the same proof) to the case of class P homeomorphisms.

Definitions. A *class P* homeomorphism is an orientation preserving homeomorphism of the circle with the following properties:

its lift \tilde{f} is differentiable except in countably many points called *break points* admitting left and right derivatives; the derivative of \tilde{f} is a 1-periodic function, its restriction to [0, 1] denoted by Df has the following properties:

— there exists some constants 0 < a < b such that:

$$a < Df(x) < b$$
, for all x where Df exists,
 $a < Df_{+}(c) < b$ and $a < Df_{-}(c) < b$ at the break points;

— Df has bounded variations (on [0, 1]).

The ratio $\sigma_f(c) := \frac{Df_+(c)}{Df_-(c)}$ is called *the derivative jump* of f in c, or f-jump.

The maps we intent to investigate: the *piecewise linear (PL) homeomorphisms* (orientation preserving homeomorphisms of the circle with derivative piecewise constant) are the simplest examples of class P homeomorphisms that are not C^2 -diffeomorphisms.

Notice that, if a homeomorphism is conjugate to an irrational rotation, the conjugating homeomorphism h is unique up to the normalization h(0)=0, and the question of its regularity -originated by Arnol'd and Moser- naturally arises. A global result was proved by M. Herman ([7]): it states that if f is a C^2 diffeomorphism of the circle with irrational rotation number α of constant type and f is close to the rotation by α then f admits an invariant probability measure equivalent to the Haar measure. The global version of this result (the condition that f is close to the rotation by α is no longer required) is proved in [8].

Also, Khanin and Sinai ([9]) proved that if f is a $C^{2+\nu}$ diffeomorphism of the circle with irrational rotation number of constant type then f is $C^{1+\nu}$ conjugate to the rotation by $\rho(f)$.

In the case of homeomorphisms, the situation becomes opposite: PL homeomorphisms were considered by M. Herman as examples of homeomorphisms with irrational rotation number and without absolutely continuous invariant measure. The case of general class P homeomorphisms (non PL homeomorphisms) with one break point has been studied by A.A. Dzhalilov and K.M. Khanin [4]. Assuming the rotation number is irrational, they proved that the invariant probabilty measure is singular with respect to the Haar measure. In [11], the author proves the same conclusion for PL homeomorphisms that have the following properties:

- irrational rotation number of constant type,
- disjoint break points orbits,
- Z-independant logarithms of sloops.

Yet, the case of PL homeomorphisms is double, there exist PL homeomorphisms with absolutely continuous invariant measure: consider the homeomorphisms that are obtained by conjugating a rotation through a PL homeomorphism. More over, M. Herman's result give rise to examples of PL homeomorphisms with absolutely continuous invariant measure but not PL conjugate to a rotation. In more detail, in section 7, chapter VI of [6], M. Herman studies the following family of PL homeomorphisms.

Definition of the Herman's examples. Let $\lambda > 1$ and $\beta > 0$ be two real numbers. We define, for $x \in [0, 1]$:

$$f_{\beta,\lambda}(x) = \begin{cases} \lambda x \text{ if } 0 \le x \le a \\ \lambda^{-\beta}(x-1) + 1 \text{ if } a \le x \le 1, \end{cases}$$

with $\lambda a = \lambda^{-\beta}(a-1) + 1$.

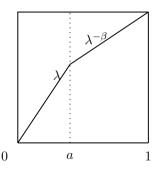


Figure 1: Herman examples $f_{\beta,\lambda}$.

Consider now the 1-parameter family of PL homeomorphisms of the circle $R_b \circ f_{\beta,\lambda}$ where $b \in [0,1]$ and R_b denotes the rotation by b. By continuity of the rotation number, M. Herman proved that given an irrational number α , there exists a unique $b \in [0,1]$ such that $R_b \circ f_{\beta,\lambda}$ has rotation number α , this homeomorphism is denoted by $f_{\alpha,\beta,\lambda}$.

Herman's result. The following properties are equivalent:

- (i) $f_{\alpha,\beta,\lambda}$ is conjugate to R_{α} through an absolutely continuous homeomorphism,
- (ii) $f_{\alpha,\beta,\lambda}$ is conjugate to R_{α} through a lipschitz homeomorphism,
- (iii) $f_{\alpha,\beta,\lambda}$ is conjugate to R_{α} through a piecewise C^{∞} homeomorphism (but not PL),

- (iv) $\frac{\beta}{1+\beta} \in \mathbb{Z}\alpha \pmod{1}$,
- (v) the break points 0 and a belong to the same f-orbit.

Our purpose in this paper is to give characterizations of the PL homeomorphisms of the circle that are piecewise C^1 conjugate to irrational rotations. Notice that for a homeomorphism which is piecewise C^1 conjugate to rotation, the numbers of break points of the n-th iterates is bounded by some constant that does not depend on n. We'll see that this property is characteristic.

A very special family of Herman's examples has been studied by others authors ([1], [2], [10]) in the context of intervals exchange transformations. We call them *affine 2-intervals exchange transformations*, they are the Herman's examples with break points 0 and a satisfying f(a) = 0. Fixing the initial break point to be 0, these maps are uniquely determined by their loops (λ, λ') we denote them by $A_{\lambda,\lambda'}$ whithout making any distinction between the PL homeomorphism of the circle f and the associated interval exchange transformation (i.e. the bijection from [0, 1] given by $\tilde{f}(mod 1)$ that is drawn on picture 2).

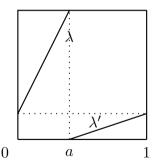


Figure 2: Affine 2-intervals exchange transformation $A_{\lambda,\lambda'}$.

We leave the reader verify the following properties (or consult [10]).

Properties of 2-intervals exchange transformations.

— The piecewise C^{∞} (analytic) homeomorphism h with only one break point given by the restriction to [0,1[of its lift \tilde{h} (denoted also by h)

$$h(x) := \frac{\left(\frac{\lambda}{\lambda'}\right)^x - 1}{\frac{\lambda}{\lambda'} - 1}$$

conjugate $A_{\lambda,\lambda'}$ to the rotation by $\frac{\log \lambda}{\log \lambda - \log \lambda'}$, more precisely we have $A_{\lambda,\lambda'} = h \circ R_{\alpha} \circ h^{-1}$.

- Conversely, the homeomorphism $h_w(x) := \frac{w^x 1}{w 1}$ conjugate any rotation to an affine 2-intervals exchange transformation.
- Two distincts (distincts pairs of loops) affine 2-intervals exchange transformations are not PL conjugate, we suppose that they have the same initial break point 0. Else, the only way for affine 2-intervals exchange transformations to be conjugate is to be conjugate through a rotation R_b , this operation translates the initial point 0 in b.

We'll see in the coming theorem that in some sense this family functions as normal forms for PL homeomorphisms that are piecewise C^1 conjugate to rotations.

Theorem. Let f be a PL homeomorphsim with irrational rotation number α . The following properties are equivalent:

- (i) f is conjugate to R_{α} through a piecewise C^1 homeomorphism,
- (ii) the number of break points of f^n is bounded by some constant that doesn't depend on n,
- (iii) f is conjugate to an affine 2-intervals exchange transformation $A_{\lambda,\lambda'}$ (with rotation number α) through a PL homeomorphism,
- (iv) f is conjugate to R_{α} through a piecewise C^{∞} (analytic) homeomorphism.

Corollary. Let f be a PL homeomorphsim with irrational rotation number α with only one orbit of break points then f is conjugate to a $A_{\lambda,\lambda'}$ through a PL homeomorphism and is conjugate to R_{α} through a piecewise C^{∞} (analytic) homeomorphism.

This corollary is related to the result of [5]: Dzhalilov considers piecewise $C^{2+\varepsilon}$ homeomorphisms f of the circle with break points $x_{p_0}, x_{p_1}, \ldots, x_{p_m}, p_0 = 0 < p_1 < \cdots < p_m$, such that $x_{p_i} = f^{p_i}(x_0)$ and the product of the derivative jumps in this points is trivial. Assuming that the rotation number ρ of f is irrational and its chain fraction expansion is $\rho = [k_1, k_2, k_3, \ldots]$ with $k_n \leq \text{const}$, he proved that f is conjugate to a rotation through a piecewise $C^{1+\varepsilon}$ homeomorphism.

Some implications of our theorem are obvious: $(i) \Longrightarrow (ii)$ and $(iv) \Longrightarrow (i)$. The implication $(iii) \Longrightarrow (iv)$ is a consequence of the recalled properties for affine 2-intervals exchange transformations. The only implication remaining is $(ii) \Longrightarrow (iii)$.

2 Proof of the theorem and its corollary

Lemma 1. Let f and g be two class P homeomorphisms of the circle with the same irrational rotation number. If there exists an integer n such that $f^n = g^n$ then f = g.

Lemma 2. Assume A is an affine 2-intervals exchange transformation with rotation number α , N is a fixed integer and α_0 is such that $N\alpha_0 = \alpha \pmod{1}$.

There exists an affine 2-intervals exchange transformation with rotation number α_0 such that $(A_0)^N = A$.

Lemma 3. Assume F is a PL homeomorphism with 2p break points c_1, \ldots, c_p , d_1, \ldots, d_p satisfying the following properties:

- $F(c_i) = d_i$,
- $\sigma_F(c_i).\sigma_F(d_i) = 1$,
- $F(d_i)$ is not a break point of F.

Then F is PL conjugate to an affine 2-intervals exchange transformation.

Lemma 4. Let f be a PL homeomorphism of the circle with irrational rotation number. If the number of break points of f^n is bounded by some constant that does not depend on n then there exists an integer N such that f^N satisfies the hypothesis of lemma 3.

Combining this 4 lemmas we obtain the implication $(ii) \Longrightarrow (iii)$. In more detail, assume f is a PL homeomorphism with irrational rotation number satisfying the condition that the number of break points of f^n is bounded by some constant that does not depend on n. By lemma 4 and lemma 3, it's possible to find an iterate $F = f^N$ of f that is PL conjugate to an affine 2-intervals exchange transformation A with rotation number $N\rho(f)$. By lemma 2, there exists A_0 an affine 2-intervals exchange transformation with rotation number $\rho(f)$ such that $A = (A_0)^N$.

Resuming this, there exists a PL homeomorphism H and an affine 2-intervals exchange transformation A_0 with rotation number $\rho(f)$ such that $f^N = H \circ (A_0)^N \circ H^{-1} = (H \circ A_0 \circ H^{-1})^N$. Finally, lemma 1 concludes the proof.

For the corollary, we have to prove that -under its hypothesis- the number of break points of f^n is bounded by some constant that doesn't depend on n, this fact has been already proved in [11], we recall it.

The set of the break points of f can be written as:

$$0 = c_1, c_2 = f^{-N_2}(0), \ldots, c_p = f^{-N_p}(0), N_p \in \mathbb{N}, 0 < N_2 < \ldots < N_p,$$

with the following properties:

(*) the positive (resp. negative) orbit of 0 (resp. c_p) doesn't contain any break points of f,

(**) the product of the f-jumps in these points is trivial.

These properties will give rise to cancelations when we will compute the jumps of f^{n+1} .

In more detail, the "a priori" break points of the iterate f^{n+1} are the points $f^{-k}(c_i)$ with $0 \le k \le n$, that is, the points $f^{-k}(0)$ with $0 \le k \le n + N_p$. Computing the jump of f^{n+1} in the point $f^{-k}(0)$, we get:

$$\sigma_{f^{n+1}}(f^{-k}(0)) = \sigma_f(f^{n-k}(0)) \times \ldots \times \sigma_f(f^{-k}(0)).$$

Now, for n greater than N_p and $N_p \le k \le n$, the f-orbit segment

$$\{f^{n-k}(0), f^{n-k-1}(0), \dots, f^{-k}(0)\}$$

contains 0 and $f^{-N_p}(0)$, it follows that

$$\sigma_{f^{n+1}}(f^{-k}(0)) = \sigma_f(0) \times \dots \sigma_f(f^{-N_i}(0)) \dots \times \dots \sigma_f(f^{-N_p}(0)) = 1,$$

because of properties (*) and (**).

Conclusion. For *n* greater than N_p , the iterate f^{n+1} has at most $2N_p$ break points:

0,
$$f^{-1}(0), \dots, f^{-(N_p-1)}(0)$$

 $f^{-(n+1)}(c_n), \dots, f^{-(n+N_p)}(0).$

3 Proofs of the lemmas

Proof of Lemma 1. Since $\alpha = \rho(f) = \rho(g)$ is irrational, there exists h_1 and h_2 homeomorphisms such that $R_{\alpha} = h_1 \circ f \circ h_1^{-1} = h_2 \circ g \circ h_2^{-1}$ and $h_1(0) = h_2(0) = 0$.

By iterating n-times, we have:

$$R_{n\alpha} = h_1 \circ f^n \circ h_1^{-1} = h_2 \circ g^n \circ h_2^{-1} = h_2 \circ f^n \circ h_2^{-1}.$$

Since the normalized conjugacy between $R_{n\alpha}$ and f^n is unique, we have $h_1 = h_2$ and therefore f = g.

Proof of Lemma 2. Let A be an affine 2-intervals exchange transformation. We've mentioned in the introduction that A is conjugate to R_{α} (with $\alpha =$

$$\frac{\log \lambda}{\log \lambda - \log \lambda'}$$
) through the homeomorphism $h(x) = \frac{(\frac{\lambda}{\lambda'})^x - 1}{\frac{\lambda}{\lambda'} - 1}$.

Now, consider $A_0 := h \circ R_{\alpha_0} \circ h^{-1}$. It is an affine 2-intervals exchange transformation and

$$(A_0)^N = (h \circ R_{\alpha_0} \circ h^{-1})^N = h \circ R_{N\alpha_0} \circ h^{-1} = h \circ R_{\alpha} \circ h^{-1} = A.$$

Proof of Lemma 3. Consider the PL homeomorphism *H* defined by:

- d_1, d_2, \ldots, d_p are break points of H,
- the jumps of H in these points are $\sigma_H(d_i) := \sigma_F(d_i)$, for all $i \in \{1, \dots, p\}$.

A necessary and sufficient condition for *H* to have exactly these break points is that

$$\prod_{i=1}^p \sigma_H(d_i) = 1.$$

When this identity holds, the right sloope λ_1 in d_1 and therefore all the sloops λ_i of H are uniquely determined by the identity

$$1 = \sum_{i=1}^{p} \lambda_i (d_{i+1} - d_i) = \lambda_1 \sum_{i=1}^{p} (\sigma_H(d_2) \dots \sigma_H(d_i)) (d_{i+1} - d_i),$$

with convention $d_{p+1} = d_1$.

When it's not the case, we have to add one break point c such that

$$\sigma_H(c) = \left(\prod_{i=1}^p \sigma_H(d_i)\right)^{-1},$$

we choose it with the additionnal properties:

- $c \in]d_p, d_1[,$
- $c \notin \{c_1,\ldots,c_p\}$,
- $c \notin F(\{d_1,\ldots,d_p\}).$

As previously, the right sloope λ_1 in d_1 and all the sloops λ_i of H are uniquely determined by the identity

$$\frac{1}{\lambda_1} = \sum_{i=1}^{p-1} \sigma_H(d_2) \dots \sigma_H(d_i) |d_{i+1} - d_i| + \sigma_H(d_2) \dots \sigma_H(d_p) |c - d_p| + \sigma_H(d_2) \dots \sigma_H(d_p) \sigma_H(c) |d_1 - c|.$$

Now, we compute the break points of the conjugate $H \circ F \circ H^{-1}$ and the jumps in these points.

The "a priori" break points of $H \circ F \circ H^{-1}$ are:

- the break points of H^{-1} : $H(d_i)$, H(c),
- the image by H of the break points of $F: H(d_i), H(c_i),$
- the image by $H \circ F^{-1}$ of the break points of $H: H \circ F^{-1}(d_i), H \circ F^{-1}(c)$.

Since $F(c_i) = d_i$, the "a priori" break points of $H \circ F \circ H^{-1}$ are $H(d_i)$, $H(c_i)$, H(c), $H \circ F^{-1}(c)$. The jumps in these points are:

$$\sigma_{H \circ F \circ H^{-1}}(H(d_i)) = \sigma_H(F(d_i))\sigma_F(d_i)\sigma_{H^{-1}}(H(d_i)) = \frac{\sigma_H(F(d_i))\sigma_F(d_i)}{\sigma_H(d_i)} = 1,$$

because of the choice $\sigma_H(d_i) := \sigma_F(d_i)$ and the fact that $F(d_i)$ is not a break point of H (this results froms the facts that $F(d_i) \neq c$ and $F(d_i)$ is not a break point of F, hence $F(d_i) \neq d_i$).

$$\sigma_{H \circ F \circ H^{-1}}(H(c_i)) = \frac{\sigma_H(F(c_i))\sigma_F(c_i)}{\sigma_H(c_i)} = \sigma_H(d_i)(\sigma_F(d_i))^{-1} = 1,$$

because of $\sigma_H(d_i) := \sigma_F(d_i) = (\sigma_F(c_i))^{-1}$ and the fact that c_i is not a break point of H.

Finally, the PL homeomorphism $H \circ F \circ H^{-1}$ has at most 2 (0 or 2) break points: $H \circ F^{-1}(c)$ and its image $H \circ F \circ H^{-1}(H \circ F^{-1}(c)) = H(c)$, it's a rotation or an affine 2-intervals exchange transformation (the initial point being 0 = H(c)).

Proof of Lemma 4. Assume f is a PL homeomorphism with irrational rotation number and suppose that the number of break points of the n-th iterate of f is bounded by some constant that doesn't depend on n.

Definition. A maximal f-connection is a f-orbit segment:

$$a_1, f^{-1}(a_1), \dots, a_2 = f^{-N_2}(a_1), \dots, a_s = f^{-N_s}(a_1)$$
 where

- a_i are pairwise distincts break points of f,
- N_i are integers $0 < N_2 < \ldots < N_s$,
- The positive orbit of a_1 doesn't contain any break point of f,
- The negative orbit of a_s doesn't contain any break point of f.

Claim 1. Under the hypothesis of lemma 4, each break point d of f is contained in a maximal f-connection and the product of the f-jumps along this orbit segment is trivial.

Compute the jump of f^{n+1} in the point $f^{-k}(d)$, $k = 0, \ldots, n$, we'll get:

$$\sigma_{f^{n+1}}(f^{-k}(d)) = \sigma_f(f^{n-k}(d)) \dots \sigma_f(d) \dots \sigma_f(f^{-k}(d)).$$

Since $\sigma_f(d) \neq 1$, if d is not contained in a f-orbit segment along which the product of f-jumps is trivial, all the points $f^{-k}(d)$, $k = 0, \ldots, n$ are break points of f^{n+1} and the number of break points of f^{n+1} is greater than n+1 so it can't be bounded by some constant that doesn't depend on n. Finally, since f doesn't admit any periodic orbit, we can extend the previous orbit segment to a maximal f-connection along which the product of f-jumps is trivial.

As result of claim 1, the set of break points of f can be written as an union of maximal f-connections along which the product of f-jumps is trivial:

$$b_{1}, \dots, f^{-N_{1}(1)}(b_{1}), \dots, f^{-N_{p_{1}}(1)}(b_{1}) = \beta_{1}$$

$$b_{2}, \dots, f^{-N_{1}(2)}(b_{2}), \dots, f^{-N_{p_{2}}(2)}(b_{2}) = \beta_{2}$$

$$\vdots$$

$$\vdots$$

$$b_{m}, \dots, f^{-N_{1}(m)}(b_{m}), \dots, f^{-N_{p_{m}}(m)}(b_{m}) = \beta_{m}.$$

The positive (resp. negative) orbit of b_i (resp. β_i) doesn't contain any break point of f.

Consider N an integer greater than all $L_i := N_{p_i}(i)$, and compute the break points of $F = f^{N+1}$. As we've did in the proof of the corollary, we find the $2(L_1 + L_2 + ... + L_m)$ following points:

$$b_1, \dots, f^{-L_1+1}(b_1) = f(\beta_1)$$

$$c_{1} = f^{-(N+1)+L_{1}}(\beta_{1}), \dots, f^{-N}(\beta_{1})$$

$$b_{2}, \dots, f^{-L_{2}+1}(b_{2}) = f(\beta_{2})$$

$$c_{2} = f^{-(N+1)+L_{2}}(\beta_{2}), \dots, f^{-N}(\beta_{2})$$

$$\vdots$$

$$\vdots$$

$$b_{m}, \dots, f^{-L_{m}+1}(b_{m}) = f(\beta_{m})$$

$$c_{m} = f^{-(N+1)+L_{m}}(\beta_{m}), \dots, f^{-N}(\beta_{m})$$

with the following suitable properties for lemma 3.

The couple (b_1, c_1) satisfies:

$$\begin{split} F(c_1) &= f^{N+1}(f^{-(N+1)+L_1}(\beta_1)) = f^{L_1}(\beta_1) = b_1 \\ \sigma_F(b_1) &= \sigma_{f^{n+1}}(b_1) = \sigma_f(b_1) \dots \sigma_f(f^n(b_1) = \sigma_f(b_1) \\ \sigma_F(c_1) &= \sigma_{f^{n+1}}(f^{-(N+1)+L_1}(\beta_1)) = \sigma_f(f^{-(N+1)+L_1}(\beta_1)) \dots \sigma_f(f^{L_1-1}(\beta_1)) \\ &= \sigma_f(f^{-(N+1)}(b_1)) \dots \sigma_f(f^{-1}(b_1)) = \frac{1}{\sigma_f(b_1)} = \frac{1}{\sigma_F(b_1)}. \end{split}$$

The same holds for the couples

$$(f^{-1}(b_1), f^{-1}(c_1)), \dots, (f^{-L_1+1}(b_1), f^{-L_1+1}(c_1)).$$

$$F(b_1) = f^{N+1}(b_1), F(f^{-1}(b_1) = f^N(b_1), \dots, F(f(\beta_1)) = f^{(N+1)-L_1}(b_1)$$

are not break points of F: the positive f-orbit of b_1 doesn't contain any break point of f because of the maximality of the connection.

Since the same holds for all others value of i = 2, ..., m, we can conclude that the hypothesis of lemma 3 are realized.

References

- [1] M. Boshernitzan, *Dense orbits of rationals*, Proc. AMS, **117**(4) (1993), 1201–1203.
- [2] Z. Coelho, A. Lopez and L. F. da Rocha, *Absolutely continuous invariant measures for a class of affine interval interval exchange maps*, Proc. AMS, **123**(11) (1995), 3533–3542.
- [3] A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., **11** (1932), 333–375.

[4] A.A. Dzhalilov and K.M. Khanin, *On invariant measure for homeomorphisms of a circle with a break point*, Functional Analysis and its Applications, **32**(3) (1998), 153–161.

- [5] A.A. Dzhalilov, *Piecewise-smoothness of conjugations of homeomorphisms of the circle with break-type singularities*, Teoret. Mat. Fiz. 120 (1999), n. 2, 179–192; translation in Theoret. and Math. Phys. 120 (1999), n. 2, 961–972.
- [6] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Etudes Sci. Publ. Math.. **49** (1979), 5–234.
- [7] M. Herman, Sur les difféomorphismes du cercle de nombre de rotation de type constant, Conference on Harmonic Analysis in Honor of A. Zygmund, Vol II (1981), 707–725.
- [8] Y. Katznelson and D. Ornstein, *The absolute continuity of the conjugation of certain diffeomorphisms of the circle*, Erg. Th. and Dyn. Syst., **9** (1989), 681–690.
- [9] K.M. Khanin and Ya.G Sinai, *Smoothness of conjugacies of diffeomorphisms of the circle with rotations*, Russ. Math. Surv. 44, n. 1, (1989), 69–99; translation-from Usp. Mat. Nauk 44, n. 1 (265), (1989), 57–82.
- [10] I. Liousse and H. Marzougui, *Echanges d'intervalles affines conjugués à des linéaires*, Erg. Th. and Dyn. Syst., **22** (2002), 535–554.
- [11] I. Liousse, Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle, prépublication.
- [12] H. Poincaré, Oeuvres complètes, t.1, 137–158.

Isabelle Liousse

Laboratoire Paul Painlevé U.M.R 8524 au C.N.R.S. U.F.R. de Mathématiques, Université Lille I 59655 Villeneuve d'Ascq Cedex FRANCE

E-mail: Isabelle.Liousse@agat.univ-lille1.fr